Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Graphene cushion OEM factory in Indonesia
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Thailand neck support pillow OEM
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Custom graphene foam processing Indonesia
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.China insole ODM service provider
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.China custom insole OEM supplier
The protein Argonaute, which helps cells control protein production in a process called RNA interference. Credit: CSHL, in conjunction with Scripps Research Scientists are working to better understand the RNA interference process, which could help improve treatments, such as cancer therapies. Recently, researchers discovered how the Argonaute protein is able to keep protein production on track by leveraging limited resources. This basic research breakthrough could help lead to advanced new therapies in the future. Cells produce proteins like little factories. But if they make too much at the wrong times it can lead to diseases like cancer, so they control production with a process called RNA interference (RNAi). As of July 2021, several drugs already take advantage of RNAi to treat painful kidney and liver diseases—with another seven in clinical trials. There is a lot of potential for RNAi therapeutics, and Cold Spring Harbor Laboratory (CSHL) researchers are working hard to paint a complete picture of the process, to improve therapies today and make better ones tomorrow. RNA interference (RNAi) is a biological process in which RNA molecules participate in the sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. CSHL Professor & Howard Hughes Medical Institute (HHMI) Investigator Leemor Joshua-Tor and recent CSHL School of Biological Sciences graduate Brianna Bibel are filling in some of the blanks. They recently discovered how RNAi’s workhorse protein Argonaute (Ago) leverages limited resources to keep protein production on track. Argonaute’s Role in RNAi It’s important to understand exactly how RNAi works because it’s such a basic and heavily used process, Joshua-Tor said. It also offers a kind of safety net for therapeutics because it doesn’t make permanent changes to cells and can be reversed. Joshua-Tor says: “For therapeutics, you’d kinda maybe not wanna mess around with the genome so much. In all these kinds of things, you wanna know exactly what’s happening, and if something isn’t working, then you know what to do and where to look. The more information you have, the better it is—you get a complete picture of what’s happening.” As essential components of the RNA-induced silencing complex (RISC), Argonaute protein family plays a central role in RNA silencing processes. Phosphorylation Helps Argonaute Function Efficiently Ago helps cut off protein production by finding, binding, and destroying molecules called mRNA—which tell cells to make proteins. But the amount of Ago in the body pales in comparison to the amount of mRNA it must target. After destroying one, the protein is still capable of finding another but it can’t move on without help. Bibel discovered how cells use a process called phosphorylation to break Ago’s grip on an mRNA target, allowing it to commute to the next. Bibel explains: “Our theory is that having phosphorylation promote release is a way that you could free up Argonaute because when the target gets released, the guide’s still there and it’s super duper stable. So our thinking is that by phosphorylating it, you’re going to free it to go repress other targets—because it’s still totally capable of doing that work.” Bibel hopes her discovery will come in handy as research into RNAi continues. “A lot of great advances in science come from just doing basic research,” she said. “And this is one of those basic research questions, trying to figure out how this is working.” Reference: “Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release” by Brianna Bibel, Elad Elkayam, Steve Silletti, Elizabeth A Komives and Leemor Joshua-To, 31 May 2022, eLife. DOI: 10.7554/eLife.76908 Funding: National Science Foundation, Howard Hughes Medical Institute
Brown morph of Shah’s Eyelash-Pitviper (Bothriechis rasikusumorum). This species is named after the Shah family. It is endemic to Huila department in southeastern Colombia, where it inhabits montane cloud forests and coffee plantations. Credit: Jose Vieira Scientists have identified five new eyelash viper species in Colombia and Ecuador with unique appearances. A group of scientists led by researchers of Khamai Foundation discovered five dazzling new species of eyelash vipers in the jungles and cloud forests of Colombia and Ecuador. This groundbreaking discovery was made official in a study published in the open-access journal Evolutionary Systematics. Prior to this research, the captivating new vipers, now recognized as among the most alluring ever found, were mistakenly classified as part of a single, highly variable species spanning from Mexico to northwestern Peru. The decade-long study was initiated with an unexpected incident wherein one of the authors was bitten by one of these previously undiscovered species. Eyelash vipers stand out due to a distinctive feature: a set of enlarged spine-like scales positioned atop their eyes. These “lashes” bestow upon the snakes a formidable and fierce appearance, yet the true purpose of this feature remains unknown. What is definite, however, is that certain populations exhibit longer, and more stylized eyelashes compared to others. The variations in the condition of the eyelashes led researchers to hypothesize the existence of undiscovered species. Bothriechis khwargi. Credit: Elson Meneses Eyelash vipers are also famous for another feature: they are polychromatic. The same patch of rainforest may contain individuals of the turquoise morph, the moss morph, or the gold morph, all belonging to the same species despite having an entirely different attire. “No two individuals have the same coloration, even those belonging to the same litter (yes, they give birth to live young),” says Alejandro Arteaga, who led the study. For some of the species, there is a “Christmas” morph, a ghost morph, and even a purple morph, with the different varieties sometimes coexisting and breeding with one another. The reason behind these incredible color variations is still unknown, but probably enables the vipers to occupy a wide range of ambush perches, from mossy branches to bright yellow heliconias. “Coffee” morph of Bothriechis klebbai. This species is named after Casey Klebba, who co-founded MiniFund with Carly Jones to preserve tropical biodiversity. It is endemic to the Cordillera Oriental in eastern Colombia. Credit: Elson Meneses Where do these new snakes live? Three of the five new species are endemic to the eastern Cordillera of Colombia, where they occupy cloud forests and coffee plantations. One, the Rahim’s Eyelash-Pitviper, stands out for occurring in the remote and pristine Chocó rainforest at the border between Colombia and Ecuador, an area considered “complex to visit” due to the presence of drug cartels. Bothriechis rahimi. Credit: Lucas Bustamante The Hussain’s Eyelash-Pitviper occurs in the forests of southwestern Ecuador and extreme northwestern Peru. The researchers outline the importance of conservation and research in the Andes mountain range and its valleys due to its biogeographic importance and undiscovered megadiversity. What’s with the venom? “The venom of some (perhaps all?) of the new species of vipers is considerably less lethal and hemorrhagic than that of the typical Central American Eyelash-Viper,” says Lucas Bustamante, a co-author of the study. Lucas was bitten in the finger by the Rahim’s Eyelash-Pitviper while taking its pictures during a research expedition in 2013. “I experienced intermittent local pain, dizziness, and swelling, but recovered shortly after receiving three doses of antivenom in less than two hours after the bite, with no scar left behind,” says Bustamante. “Coffee” morph of Bothriechis klebbai. This species is named after Casey Klebba, who co-founded MiniFund with Carly Jones to preserve tropical biodiversity. It is endemic to the Cordillera Oriental in eastern Colombia. Credit: Elson Meneses How threatened are these new species? One of the study’s key conclusions is that four of the species in the group are facing a high risk of extinction. They have an extremely limited geographic range and 50% to 80% of their habitat has already been destroyed. Therefore, a rapid-response action to save the remaining habitat is urgently needed. Yellow-pink morph of Rahim’s Eyelash-Pitviper (Bothriechis rahimi). This species is named after Prince Rahim Aga Khan and stands out for occurring in remote and pristine rainforests currently controlled by drug cartels at the border between Ecuador and Colombia. Credit: Alejandro Arteaga Who is honored with this discovery? Two of the new species of vipers, the Rahim’s Eyelash-Pitviper (Bothriechis rahimi) and the Hussain’s Eyelash-Pitviper (B. hussaini), are named in honor of Prince Hussain Aga Khan and Prince Rahim Aga Khan, respectively, in recognition of their support to protect endangered global biodiversity worldwide through Focused On Nature (FON) and the Aga Khan Development Network. The Shah’s Eyelash-Pitviper (B. rasikusumorum) honors the Shah family, whereas the Klebba’s Eyelash-Pitviper (B. klebbai) and the Khwarg’s Eyelash-Pitviper (B. khwargi) honor Casey Klebba and Dr. Juewon Khwarg, respectively, for supporting the discovery and conservation of new species. Black-and-yellow morph of Hussain’s Eyelash-Pitviper (Bothriechis hussaini). This species is named after Prince Hussain Aga Khan, who has devoted his life, influence, and wealth to environmental conservation since he was eleven years old. Credit: Alejandro Arteaga What is next? Khamai Foundation is setting up a reserve to protect a sixth new species that remained undescribed in the present study. “The need to protect eyelash vipers is critical, since unlike other snakes, they cannot survive without adequate canopy cover. Their beauty, though worthy of celebration, should also be protected and monitored carefully, as poachers are notorious for targeting charismatic arboreal vipers for the illegal pet trade of exotic wildlife,” warns Arteaga. Finally, he and his team encourage the support of research on the venom components of the new species of vipers. This will promote their conservation as well as help communities that regularly encounter eyelash pitvipers. Reference: “Systematic revision of the Eyelash Palm-Pitviper Bothriechis schlegelii (Serpentes, Viperidae), with the description of five new species and revalidation of three” by Alejandro Arteaga, R. Alexander Pyron, Abel Batista, Jose Vieira, Elson Meneses Pelayo, Eric N. Smith, César L. Barrio Amorós, Claudia Koch, Stefanie Agne, Jorge H. Valencia, Lucas Bustamante and Kyle J. Harris, 8 February 2024, Evolutionary Systematics. DOI: 10.3897/evolsyst.8.114527
Anolis lizard rebreathes exhaled air underwater using a bubble clinging to their snouts. Credit: Lindsey Swierk A team of evolutionary biologists including faculty at Binghamton University, State University of New York have shown that some Anolis lizards, or anoles, have adapted to rebreathe exhaled air underwater using a bubble clinging to their snouts. Semi-aquatic anoles live along neotropical streams and frequently dive for refuge, remaining underwater for up to 16 minutes. Lindsey Swierk, assistant research professor of biological sciences at Binghamton University, documented this behavior in a Costa Rican anole species in 2019. She had been shocked to see an anole submerge itself for such long periods and used a GoPro underwater to document the behavior. “It’s easy to imagine the advantage that these small, slow anoles gain by hiding from their predators underwater — they’re really hard to spot!” says Swierk. “But the real question is how they’re managing to stay underwater for so long.” The researchers conducted experiments documenting routine air-based underwater respiration in several distantly related semi-aquatic anole species. They found that semi-aquatic anoles can respire underwater by ”rebreathing” exhaled air that is trapped between their skin and surrounding water. “We found that semi-aquatic anoles exhale air into a bubble that clings to their skin,” said lead author Chris Boccia, a recent master of science graduate from the University of Toronto. “The lizards then re-inhale the air, a maneuver we’ve termed ‘rebreathing’ after the scuba-diving technology.” The researchers believe that hydrophobic skin, which they observed in all sampled anoles, may have been exaptative, facilitating the repeated evolution of specialized rebreathing in species that regularly dive. Their analyses strongly suggest that specialized rebreathing is adaptive for semi-aquatic habitat specialists. Air-based rebreathing may enhance dive performance by incorporating dead space air from the buccal cavity or plastron into the lungs, facilitating clearance of carbon dioxide, or allowing uptake of oxygen from surrounding water (i.e., a ”physical gill” mechanism.) The team used an oxygen sensor inside the rebreathed bubbles to determine whether anoles were consuming oxygen from the bubble. In true “scuba-tank” fashion, the researchers discovered that the oxygen concentration in an anole’s air bubble decreases over the length of the dive, in support of this idea. “The finding that different species of semi-aquatic anoles have evolutionarily converged to extract oxygen from their rebreathed air bubbles leads to other exciting questions,” says Swierk. “For example, the rate of oxygen consumption from the bubble decreases the longer an anole dives, which could possibly be explained a reduction in an anole’s metabolic rate with increased dive time.” Binghamton graduate student co-author, Alexandra Martin, is currently exploring whether body cooling during dives may help explain this phenomenon. “Rebreathing had never been considered as a potential natural mechanism for underwater respiration in vertebrates,” says Luke Mahler, an assistant professor in EEB at the University of Toronto and Boccia’s thesis supervisor. “But our work shows that this is possible and that anoles have deployed this strategy repeatedly in species that use aquatic habitats.” Swierk and Mahler are planning future projects to better understand the evolution of the physiology and behavior related to rebreathing. “Anoles are a remarkable group of lizards, and the number of ways that this taxon has diversified to take advantage of their environments is mind-boggling,” said Swierk. For more on this research, read Evolutionary Biologists Just Discovered How Some Lizards Are Able to Breathe Underwater. Reference: “Repeated evolution of underwater rebreathing in diving Anolis lizards” by Christopher K. Boccia, Lindsey Swierk, Fernando P. Ayala-Varela, James Boccia, Isabela L. Borges, Camilo Andres Estupiñán, Alexandra M. Martin, Ramón E. Martínez-Grimaldo, Sebastian Ovalle, Shreeram Senthivasan, Ken S. Toyama, María del Rosario Castañeda, Andrés García, Richard E. Glor and D. Luke Mahler, 12 May 2021, Current Biology. DOI: 10.1016/j.cub.2021.04.040
DVDV1551RTWW78V
Soft-touch pillow OEM service in Thailand 》small batch friendly, big on consistencyMemory foam pillow OEM factory Thailand 》proven by years of experience in OEM/ODM for wellness productsChina graphene material ODM solution 》small batch friendly, big on consistency